1 You are given that $\mathrm{f}(x)=x^{3}+6 x^{2}-x-30$.
(i) Use the factor theorem to find a root of $\mathrm{f}(x)=0$ and hence factorise $\mathrm{f}(x)$ completely.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
(iii) The graph of $y=\mathrm{f}(x)$ is translated by $\binom{1}{0}$.

Show that the equation of the translated graph may be written as

$$
\begin{equation*}
y=x^{3}+3 x^{2}-10 x-24 \tag{3}
\end{equation*}
$$

2 You are given that $\mathrm{f}(x)=(x+1)^{2}(2 x-5)$.
(i) Sketch the graph of $y=\mathrm{f}(x)$.
(ii) Express $\mathrm{f}(x)$ in the form $a x^{3}+b x^{2}+c x+d$.

3 (i) You are given that $\mathrm{f}(x)=(x+1)(x-2)(x-4)$.
(A) Show that $\mathrm{f}(x)=x^{3}-5 x^{2}+2 x+8$.
(B) Sketch the graph of $y=\mathrm{f}(x)$.
(C) The graph of $y=\mathrm{f}(x)$ is translated by $\binom{3}{0}$.

State an equation for the resulting graph. You need not simplify your answer.
Find the coordinates of the point at which the resulting graph crosses the y-axis.
(ii) Show that 3 is a root of $x^{3}-5 x^{2}+2 x+8=-4$. Hence solve this equation completely, giving the other roots in surd form.

4 You are given that $\mathrm{f}(x)=2 x^{3}+7 x^{2}-7 x-12$.
(i) Verify that $x=-4$ is a root of $\mathrm{f}(x)=0$.
(ii) Hence express $\mathrm{f}(x)$ in fully factorised form.
(iii) Sketch the graph of $y=\mathrm{f}(x)$.
(iv) Show that $\mathrm{f}(x-4)=2 x^{3}-17 x^{2}+33 x$.

5 A cubic polynomial is given by $\mathrm{f}(x)=2 x^{3}-x^{2}-11 x-12$.
(i) Show that $(x-3)\left(2 x^{2}+5 x+4\right)=2 x^{3}-x^{2}-11 x-12$.

Hence show that $\mathrm{f}(x)=0$ has exactly one real root.
(ii) Show that $x=2$ is a root of the equation $\mathrm{f}(x)=-22$ and find the other roots of this equation.
(iii) Using the results from the previous parts, sketch the graph of $y=\mathrm{f}(x)$.

